Согласование, экранирование и гальваническая развязка линий связи

Все электрические линии связи требуют специальных подходов для корректной и безошибочной работы. При этом оптоволоконные линии связи решают многие из этих проблем автоматически.

Согласование электрических линий связи обеспечивает стабильное прохождение сигнала по кабелю без искажений и отражений. Суть согласования заключается в установке на концах кабеля специальных согласующих резисторов (терминаторов), чье сопротивление равно волновому сопротивлению используемого кабеля.

Волновое сопротивление - это характеристика кабеля, которая зависит от его структуры, материалов и других параметров. Это значение указывается в документации к кабелю и, как правило, составляет от 50 до 100 Ом для коаксиального кабеля и 100-150 Ом для витой пары или плоского многопроводного кабеля. Точное значение волнового сопротивления можно определить экспериментально, используя генератор импульсов и осциллограф. Важно, чтобы значение согласующего резистора отличалось от волнового сопротивления не более чем на 5-10%.

При неверном подборе согласующего резистора форма передаваемого импульса может искажаться. Например, если согласующее сопротивление меньше волнового сопротивления кабеля, фронт импульса будет затянут. Если же сопротивление больше, на фронте импульса могут возникнуть колебания.

Передача сигналов по электрическому кабелю

Рис. 2.4. Передача сигналов по электрическому кабелю

Надо сказать, что сетевые адаптеры, их приемники и передатчики специально рассчитываются на работу с данным типом кабеля с известным волновым сопротивлением. Поэтому даже при идеально согласованном на концах кабеле, волновое сопротивление которого существенно отличается от стандартного, сеть, скорее всего, работать не будет или будет работать со сбоями.

Затухание сигналов в электрическом кабеле

Рис. 2.5. Затухание сигналов в электрическом кабеле

Трапецевидный и колоколообразный импульсы

Рис. 2.6. Трапецевидный и колоколообразный импульсы

Следует отметить, что сигналы с пологими фронтами передаются по длинному электрическому кабелю лучше, чем сигналы с крутыми фронтами. Их форма искажается в меньшей степени, как показано на рис. 2.5. Такое различие обусловлено разным затуханием для разных частот, при этом высокие частоты затухают сильнее. Наименьшее искажение наблюдается у формы синусоидального сигнала, который уменьшается лишь по амплитуде. В связи с этим, чтобы улучшить качество передачи, часто применяют трапецевидные или колоколообразные импульсы (см. рис. 2.6), которые по форме приближены к полуволне синуса. Для этого фронты исходных прямоугольных сигналов искусственно затягиваются или сглаживаются.

Экранирование электрических линий связи применяется для снижения влияния на кабель внешних электромагнитных полей. Экран представляет собой медную или алюминиевую оболочку (плетеную или из фольги), в которую заключаются провода кабеля. Для того чтобы экранирование работало, экран обязательно должен быть заземлен - в этом случае наведенные на него токи стекают на землю. Экран заметно увеличивает стоимость кабеля, но в то же время повышает его механическую прочность.

Дифференциальная передача сигналов по витой паре

Рис. 2.7. Дифференциальная передача сигналов по витой паре

Снизить влияние наведенных помех можно и без экрана, если использовать дифференциальную передачу сигнала (рис. 2.7). В этом случае передача идет по двум проводам, оба они являются сигнальными. Передатчик формирует противофазные сигналы, а приемник реагирует на разность сигналов на обоих проводах. Условием согласования является равенство сопротивлений согласующих резисторов половине волнового сопротивления кабеля. Если оба провода имеют одинаковую длину и проложены рядом (в одном кабеле), то помехи действуют на оба провода примерно одинаково, и разностный сигнал между проводами практически не искажается. Именно такая дифференциальная передача применяется обычно в кабелях из витых пар. Но экранирование и в этом случае существенно улучшает помехоустойчивость.

Гальваническая развязка компьютеров от сети при использовании электрического кабеля совершенно необходима. Дело в том, что по электрическим кабелям (как по сигнальным проводам, так и по экрану) могут идти не только информационные сигналы, но и так называемый выравнивающий ток, возникающий вследствие неидеальности заземления компьютеров.

Когда компьютер не заземлен, на его корпусе образуется наведенный потенциал около 110В переменного тока (половина питающего напряжения). Его можно ощутить на себе, если одной рукой взяться за корпус компьютера, а другой за батарею центрального отопления или за какой-нибудь заземленный прибор.

При автономной работе компьютера (например, дома) отсутствие заземления, как правило, не оказывает серьезного влияния на его работу. Правда, иногда может увеличиться количество сбоев в работе компьютера. Но при соединении нескольких территориально разнесенных компьютеров электрическим кабелем, заземление становится серьезной проблемой. Если один из соединяемых компьютеров заземлен, а другой не заземлен, то возможен даже полный выход из строя одного из них или обоих.

Поэтому компьютеры крайне желательно заземлять. В случае использования трехконтактной вилки и розетки, в которых есть нулевой провод, это получается автоматически. При двухконтактной вилке и розетке необходимо принимать специальные меры, организовывать заземление отдельным проводом большого сечения. Стоит также отметить, что в случае трехфазной сети желательно обеспечить питание всех компьютеров от одной фазы.

Но проблема осложняется еще и тем, что «земля», к которой присоединяются компьютеры, обычно далека от идеала. В идеале заземляющие провода компьютеров должны сходиться в одной точке, соединенной короткой массивной шиной с зарытым в землю массивным проводником. Такая ситуация возможна только тогда, когда компьютеры не слишком разнесены, а заземление действительно сделано грамотно. Обычно же заземляющая шина имеет значительную длину, в результате чего стекающие по ней токи создают значительную разность потенциалов между ее отдельными точками. Особенно велика эта разность потенциалов в случае подключения к шине мощных и высокочастотных потребителей энергии.

Поэтому даже присоединенные к одной и той же шине, но в разных точках компьютеры имеют на своих корпусах разные потенциалы (рис. 2.8). В результате по электрическому кабелю, соединяющему компьютеры, течет выравнивающий ток (переменный с высокочастотными составляющими).

Выравнивающий ток при отсутствии гальванической развязки

Рис. 2.8. Выравнивающий ток при отсутствии гальванической развязки

Ситуация ухудшается, когда компьютеры подключаются к разным шинам заземления. Выравнивающий ток может достигать в этом случае величины в несколько ампер. Понятно, что подобные токи смертельно опасны для малосигнальных узлов компьютера. В любом случае выравнивающий ток существенно влияет на передаваемый сигнал, порой полностью забивая его. Даже тогда, когда сигналы передаются без участия экрана (например, по двум проводам, заключенным в экран), выравнивающий ток, вследствие индуктивного действия, мешает передаче информации. Именно поэтому экран всегда должен быть заземлен только в одной-единственной точке.

Грамотное соединение компьютеров электрическим кабелем обязательно должно включать (рис. 2.9):

Не стоит пренебрегать ни одним из этих требований. Например, гальваническая развязка сетевых адаптеров часто рассчитывается на допустимое напряжение изоляции всего лишь 100 В, что при отсутствии заземления одного из компьютеров может легко привести к выходу из строя его адаптера.

Правильное соединение компьютеров сети (гальваническая развязка условно показана в виде прямоугольника)

Рис. 2.9. Правильное соединение компьютеров сети (гальваническая развязка условно показана в виде прямоугольника)

Отметим, что для присоединения коаксиального кабеля обычно применяются разъемы в металлическом корпусе. Этот корпус не должен соединяться ни с корпусом компьютера, ни с «землей» (на плате адаптера он установлен с пластиковой изоляцией от крепежной планки). Заземление экрана кабеля сети лучше производить не через корпус компьютера, а отдельным специальным проводом, что обеспечивает лучшую надежность. Пластмассовые корпуса разъемов RJ-45 для кабелей с неэкранированными витыми парами снимают эту проблему.

При заземлении экрана в одной точке он становится штыревой антенной с заземленным основанием и может усиливать ВЧ-помехи на нескольких частотах, кратных его длине. Для уменьшения этого «антенного» эффекта используют многоточечное заземление по высокой частоте, т.е. в одной точке экран соединяется с «землей» накоротко, а в остальных точках - через высоковольтные керамические конденсаторы. В простейшем случае на одном конце кабеля экран соединяется с землей непосредственно, на другом конце - через емкость.